Quantum cluster algebra structures on quantum nilpotent algebras
نویسندگان
چکیده
منابع مشابه
Quantum cluster algebras and quantum nilpotent algebras.
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the correspondin...
متن کاملAcyclic Quantum Cluster Algebras
This thesis concerns quantum cluster algebras. For skew-symmetric acyclic quantum cluster algebras, we express the quantum F -polynomials and the quantum cluster monomials in terms of Serre polynomials of quiver Grassmannians of rigid modules. Then we introduce a new family of graded quiver varieties together with a new t-deformation, and generalize Nakajima’s t-analogue of q-characters to thes...
متن کاملOn quantum cluster algebras of finite type
We extend the definition of a quantum analogue of the CalderoChapoton map defined [17]. When Q is a quiver of finite type, we prove that the algebra A H |k|(Q) generated by all cluster characters (see Definition 1) is exactly the quantum cluster algebra E H |k|(Q).
متن کاملCluster algebras and quantum affine algebras
Let C be the category of finite-dimensional representations of a quantum affine algebra Uq(ĝ) of simply-laced type. We introduce certain monoidal subcategories Cl (l ∈ N) of C and we study their Grothendieck rings using cluster algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Memoirs of the American Mathematical Society
سال: 2017
ISSN: 0065-9266,1947-6221
DOI: 10.1090/memo/1169